The Influence of Three Endothelin-1 Polymorphisms on the Progression of IgA Nephropathy

(D. MAIXNEROVÁ1, M. MERTA1, J. REITEROVÁ1, J. ŠTEKROVÁ2, R. RYŠAVÁ1, H. OBEIDOVÁ1, O. VIKLICKÝ3, P. POTMĚŠIL4, V. TESAŘ1)

1Department of Nephrology and 2Department of Biology and Human Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
3Institute for Clinical and Experimental Medicine, Prague, Czech Republic
4Department of Immunopharmacology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic

Received December 8, 2006. Accepted January 29, 2007.

The study was supported by grant project of the Ministry of Education, Youth and Sports of the Czech Republic 0021620806 and was performed as a part of research project of the Institute of Experimental Medicine No. AV0Z50390512, and of the Institute of Clinical and Experimental Medicine NR 8913-4.

Corresponding author: Dita Maixnerová, Department of Nephrology, U Nemocnice 2, 128 08 Prague 2, Czech Republic. Phone.: (+420) 224 962 663; Fax: (+420) 224 962 585; e-mail: ditama@centrum.cz


Abstract. The clinical course of chronic renal diseases and their progression to ESRF is highly variable. Different candidate gene polymorphisms have been advocated as possible modulators of ESRF progression. Moreover, ET-1 has been suggested as a major promoting factor in renal disease. However, limited data are available regarding an association of three ET-1 SNP K198N, T-1370G and 3A/4A with the progression of IgAN to ESRF. We examined a group of 122 pts with histologically proved IgAN (91 pts with normal renal function, 31 pts with ESRF), as a control group we used 132 genetically unrelated healthy subjects. Patients' DNAs were genotyped for three ET-1 SNP: K198N, T-1370G and 3A/4A by means of PCR. The frequencies of different genotypes and ET-1 gene haplotypes were compared among control group, IgAN pts with normal renal function and IgAN pts with ESRF. The ET-1 genotype distribution showed no differences among the groups of IgAN with normal renal function (1. K198N – 63.74% KK, 32.97% KN, 3.3% NN; 2. TT – 68.13% TT, 28.57% TG, 3.3% GG; 3. 3A/4A – 42.22% 3A/3A, 50.0% 3A/4A, 7.69% 4A/4A ), IgAN with ESRF (1. K198N – 74.19% KK, 25.81% KN, 0% NN, 2. TT – 77.42% TT, 22.58% TG, 0% GG, 3. 3A/4A – 56.25% 3A/3A, 37.5% 3A/4A, 6.25% 4A/4A ) and the control group (1. K198N – 66.67% KK, 31.82% KN, 1.52% NN, 2. TT – 76.51% TT, 22.72% TG, 0.76% GG, 3. 3A/4A – 43.94% 3A/3A, 44.70% 3A/4A, 11.36% 4A/4A ). The analysis of haplotypes showed that the frequency of G-198, G-1370 and 4A allele combination was significantly higher in comparison with the control group (P = 0.0056). We excluded the effect of K198N, T-1370G and 3A/4A polymorphisms of the ET-1 gene in single-gene analysis on the progression of IgAN to ESRF. A significant association of the GG4A haplotype with IgAN, demonstrated by haplotype reconstruction of the ET-1 gene, could suggest a role in the pathogenesis of IgAN.

Introduction

IgA nephropathy (IgAN) is a mesangial proliferative glomerulonephritis characterized by diffuse mesangial deposition of immunoglobulin A (IgA, mainly IgA 1) or IgA-containing immune complexes (IgA-ICs). The proportion of 15–40 % patients with IgAN develop end-stage renal failure (ESRF) within twenty years.

Strong predictors of progression of IgAN have been identified and include hypertension, severe proteinuria, elevated serum creatinine level as well as histological signs of glomerular sclerosis and interstitial fibrosis. Recently, hypertriglyceridaemia, hyperuricaemia and other components of metabolic syndrome have been incriminated in the process of deterioration of renal function in IgAN. However, a variable course of IgAN progression indicates involvement of other factors as well. Recently, different candidate gene polymorphisms, affecting mainly the onset/development of arterial hypertension, have been suggested as possible modulators of the progression of IgAN towards ESRF (Syrjanen et al., 2000; Goto et al., 2002; Narita et al., 2003 a, b; Song et al, 2003). Moreover, endothelin-1 (ET-1) has been suggested as a major factor promoting renal disorders, due to its induction of renal vessel vasoconstriction and stimulatory effect on glomerular cell proliferation and extracellular matrix deposition. Single-nucleotide polymorphisms...
(SNP), K198N causing substitution in exon 5, 3A/4A (¬
134delA) and T-1370G in the promoter, affecting the
expression of the ET-1 gene have been reported to be
associated with elevated blood pressures (BP) and wors-
ening glomerular filtration rate (GFR). Therefore, genetic
factors may modulate ET-1 production and structure.

We investigated an association of three SNP of ET-1,
i.e. K198N, T-1370G and 3A/4A, with the progression
of IgAN towards ESRF, as well as with the clinical mani-
festation of IgAN.

Material and Methods

We examined a group of 122 pts with histologically
proved IgAN (91 pts with normal renal function – e.g.
normal levels of serum creatinine and normal GFR, 31
pts with ESRF); as a control group we used 132 genet-
ically unrelated healthy subjects. Informed consent was
obtained from all patients included.

Genomic DNA was isolated from peripheral blood
lymphocytes by the salting-out procedure. We used the
mismatch repair method for K198N and T-1370G poly-
morphisms. The defined primers were used for PCR.
PCR conditions were the following: initial denatur-
ation at 94° C for 5 min, followed by 30 cycles of denatura-
tion, annealing (57° C for both alleles of K198N poly-
morphism, 49° C for -1370G and 57° C for the -1370T
allele ) and extension. The PCR products were separat-
ed on 2% agarose gel containing ethidium bromide and
visualized under ultraviolet light.

The 3A/4A was detected by performing PCR amplifi-
cation followed by heteroduplex analysis. The defined
primers were used for PCR. PCR conditions were fol-
lowing: initial denaturation at 94° C for 5 min, followed
by 30 cycles of denaturation, annealing (63° C) and
extension. Twenty-five µl of each PCR product after
addition of 0.5 µl 0.5M EDTA was denatured by heating
at 95° C for 5 min and then cooled at 37° C for at least 1
h. Heteroduplex analysis was performed using Hydrolink
Mutation Detection Enhancement (MDE, BMI, AT
Biochem, Malvern, PA) gel solution. Eight µl of het-
eroduplexes and 3 µl of loading dye were elec-
trophoresed through 1 × MDE gel with 15% urea, at 250
V for 4 h. Twenty-five-cm long gels were stained with
ethidium bromide and, photographed under UV light.
3A/4A heterozygous individuals showed heteroduplexes.
The homoduplexes were mixed with 3A/3A samples and
heteroduplex analysis was repeated. The heteroduplexes
were established as 4A/4A homozygous individuals.

Statistical analysis

Allele and genotype frequencies of the K198N, T-
1370G and 3A/4A ET-1 polymorphisms were estimated
by the gene counting method, and the Hardy-Weinberg
equilibrium was tested. The χ² test was used to compare
ET-1 genotype distribution in the pts and in the con-
trols, and the frequencies of different genotypes
between the IgAN groups with normal renal function
and ESRF. Haplotype frequencies were estimated by
the maximum likelihood method
(
Haplovlew, version 3.2, 2005) in pts and controls.
The value of P = 0.01 was considered as statistically
significant.

Results

One hundred and twenty two pts with IgAN and 132
controls were genotyped for K198N, T-1370G and
3A/4A ET-1 polymorphisms (Table 1).

The pts were classified into two subgroups based on
disease progression: 91 pts had normal GFR, 31 pts had
ESRF. We compared the frequencies of different geno-
types between the IgAN groups with normal renal func-
tion and ESRF.

The ET-1 genotype distribution showed no differ-
ces among the groups of IgAN with normal renal func-
tion (1. K198N – 63.74% KK, 32.97% KN, 3.3%
NN; 2. TT – 68.13% TT, 28.57% TG, 3.3% GG; 3.
3A/4A – 42.22% 3A/3A, 50.0% 3A/4A, 7.69% 4A/4A),
IgAN with ESRF (1. K198N – 74.19% KK, 25.81%
KN, 0% NN; 2. TT – 77.42% TT, 22.58 % TG, 0% GG,
3. 3A/4A – 56.25% 3A/3A, 37.5% 3A/4A, 6.25%
4A/4A) and control group (1. K198N – 66.67% KK,
31.82% KN, 1.52% NN; 2. TT – 76.51% TT, 22.72% 
TG, 0.76% GG; 3. 3A/4A – 43.94% 3A/3A, 44.70%
4A/4A, 11.36% 4A/4A). The distribution of ET-1 geno-
types did not differ among IgAN with normal renal func-
tion, IgAN with ESRF and control group (Table 2).

Haplotype analysis

We calculated the linkage disequilibrium values
among the three ET-1 polymorphisms analysed, and
the haplotypes were reconstructed by the maximum likeli-
hood method (Haplovlew, version 3.2, 2005). The GGA
haplotype (defined as G-198, G-1370 and 4A alleles)
was significantly associated with IgAN (P = 0.0056)
(Table 3).

Discussion

IgAN is the most common nephropathy in the world
among adult patients undergoing renal biopsy (RB).
However, there is a striking geographic variation
(Johnson and Feehally, 2003).

It has been shown recently that mesangial IgA1 in
IgAN suffers from the abnormalities of O-glycosylation
(abnormal O-linked hinge-region sugars with reduced
glycosylation – Hiki et al., 1999; Lejny et al., 1999;
Floge and Feehally, 2000; Mestecky et al., 2002). In
the absence of Gal, the terminal sugar remains N-
acetylgalactosamine (GalNAc) (Tomana et al., 1997,
1999) and these sugar moieties or glycopeptides
(Kokubo et al., 1999; Kokubo et al., 2000) are recog-
nized by antibodies with anti-glycan or anti-hinge
region peptide specificities (Tomana et al., 1999, 2000).
Table 1. Genotype and allele distribution for the three ET-1 polymorphisms
The genotype and allele frequencies that we observed were in line with what we expected under the Hardy-Weinberg equilibrium assumption. The allele and genotype frequencies for all three ET-1 polymorphisms in the IgAN patients did not differ significantly from those of the controls. Finally, no significant difference was observed in genotype and allele distribution stratifying cases by gender for the polymorphisms analysed.

<table>
<thead>
<tr>
<th>ET-1 genotype, allele</th>
<th>Patients with IgAN</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>men N (%)</td>
<td>women N (%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K198N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>58 (66.67)</td>
<td>23 (65.72)</td>
</tr>
<tr>
<td>KN</td>
<td>27 (31.03)</td>
<td>11 (31.43)</td>
</tr>
<tr>
<td>NN</td>
<td>2 (2.30)</td>
<td>1 (2.86)</td>
</tr>
<tr>
<td>G/T</td>
<td></td>
<td>(82/18.1)</td>
</tr>
<tr>
<td>I/D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A3A</td>
<td>45 (51.72)</td>
<td>11 (31.43)</td>
</tr>
<tr>
<td>3A4A</td>
<td>38 (43.68)</td>
<td>19 (54.29)</td>
</tr>
<tr>
<td>4A4A</td>
<td>4 (4.60)</td>
<td>5 (14.29)</td>
</tr>
<tr>
<td>3A/4A</td>
<td></td>
<td>(69/30.7)</td>
</tr>
<tr>
<td>ET-P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>59 (68.61)</td>
<td>27 (75)</td>
</tr>
<tr>
<td>TG</td>
<td>25 (29.07)</td>
<td>8 (22.22)</td>
</tr>
<tr>
<td>GG</td>
<td>2 (2.33)</td>
<td>1 (2.78)</td>
</tr>
<tr>
<td>T/G</td>
<td></td>
<td>(84/16)</td>
</tr>
</tbody>
</table>

Table 2. The distribution of ET-1 genotypes among IgAN with normal renal function, IgAN with ESRF and control group

<table>
<thead>
<tr>
<th>ET-1 genotype</th>
<th>Pts with stable renal disease (SD) N (%)</th>
<th>Pts with end-stage renal failure (ESRF) N (%)</th>
<th>Controls N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K198N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KK</td>
<td>58 (63.74)</td>
<td>23 (74.19)</td>
<td>88 (66.67)</td>
</tr>
<tr>
<td>KN</td>
<td>30 (32.97)</td>
<td>8 (25.81)</td>
<td>42 (31.82)</td>
</tr>
<tr>
<td>NN</td>
<td>3 (3.3)</td>
<td>0</td>
<td>2 (1.52)</td>
</tr>
<tr>
<td>I/D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A3A</td>
<td>38 (42.22)</td>
<td>18 (56.25)</td>
<td>58 (43.94)</td>
</tr>
<tr>
<td>3A4A</td>
<td>45 (50)</td>
<td>12 (37.5)</td>
<td>59 (44.70)</td>
</tr>
<tr>
<td>4A4A</td>
<td>7 (7.69)</td>
<td>2 (6.25)</td>
<td>15 (11.36)</td>
</tr>
<tr>
<td>ET-P</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TT</td>
<td>62 (68.13)</td>
<td>24 (77.42)</td>
<td>101 (76.51)</td>
</tr>
<tr>
<td>TG</td>
<td>26 (28.57)</td>
<td>7 (22.58)</td>
<td>30 (22.72)</td>
</tr>
<tr>
<td>GG</td>
<td>3 (3.3)</td>
<td>0</td>
<td>1 (0.76)</td>
</tr>
</tbody>
</table>

Table 3. Haplotype analysis

<table>
<thead>
<tr>
<th>Haplotypes</th>
<th>Pts with IgAN</th>
<th>Controls</th>
<th>(\chi^2)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA</td>
<td>0.494</td>
<td>0.525</td>
<td>0.53</td>
<td>0.4664</td>
</tr>
<tr>
<td>TGC</td>
<td>0.241</td>
<td>0.295</td>
<td>2.029</td>
<td>0.1543</td>
</tr>
<tr>
<td>GTA</td>
<td>0.078</td>
<td>0.083</td>
<td>0.037</td>
<td>0.848</td>
</tr>
<tr>
<td>TTA</td>
<td>0.095</td>
<td>0.049</td>
<td>4.289</td>
<td>0.0384</td>
</tr>
<tr>
<td>GTC</td>
<td>0.024</td>
<td>0.032</td>
<td>0.324</td>
<td>0.5694</td>
</tr>
<tr>
<td>GGA</td>
<td>0.044</td>
<td>0.006</td>
<td>7.69</td>
<td>0.0056</td>
</tr>
<tr>
<td>TTC</td>
<td>0.023</td>
<td>0.01</td>
<td>1.497</td>
<td>0.2212</td>
</tr>
</tbody>
</table>
Subsequently, IgA-containing immune complexes (IgA-CICs) are formed (Mestecky et al., 2002). IgAN-CICs are found in mesangial cells more efficiently than uncomplexed IgA (Novak et al., 2002, 2005). Therefore, they are likely to play a role in the pathogenesis of IgAN.

A functional abnormality of the specific glycosyltransferases responsible for the O-glycosylation of IgA1 has been widely studied in order to uncover the mechanism of altering O-glycosylation in IgAN (Mestecky et al., 1993). However, no defect in the activity of this enzyme in bone marrow B cells in IgAN has been identified so far (Buck et al., 2003). The overproduction of macromolecular aggregates of IgA1 is likely to be based within systemic immune sites such as the bone marrow, with both systemic and mucosal antigen challenges resulting in aberrant systemic immune responses (Barratt et al., 2004). Also, familial forms of IgAN (Schena et al., 2002) have been described and linkage of IgAN to chromosome 6q22-q23 has been demonstrated (Gharavi et al., 2000; Schena et al., 2002; Magistroni et al., 2003; Scolari, 2003; Suzuki et al., 2005).

The strongest predictors of an unfavourable outcome are hypertension, severe proteinuria, and elevated serum creatinine level. Among histological lesions, glomerulosclerosis and interstitial fibrosis are the most reliable prognostic markers. In addition to these risk factors, diabetes mellitus, hypertriglyceridaemia, hyperuricaemia and other components of metabolic syndrome are significantly associated with poor prognosis, while gross haematuria, smoking habits, or serum total and HDL cholesterol are not (Syrjanen et al., 2000). Although hyperuricaemia could simply be a consequence of renal disease, further studies are necessary to prove its pathogenetic role (Johnson et al., 1999). Another recent study showed that excessive body weight is associated with the progression of IgAN (Bonnet et al., 2001).

As mentioned above, different candidate gene polymorphisms, affecting mainly the onset/development of arterial hypertension, have been advocated as possible modulators of the progression of chronic nephropathies. A deletion allele in the angiotensin-converting enzyme (ACE) gene increases serum and tissue ACE levels and has been associated with the risk of progression of IgAN. The findings have not been confirmed in all studies, however. The link is unlikely to be specific for IgAN (Syrjanen et al., 2000; Narita et al., 2003b).

Previous studies investigating a potential effect of the ET-1 gene on renal disease progression provided conflicting results (Pinto-Sietsma et al., 2003; Tahala et al., 2004). ET-1 stimulates glomerular cell proliferation and extracellular matrix deposition, causes vasoconstriction of renal blood vessels and likely participates in impairment of renal perfusion. The renal ischemia contributes to tubulo-interstitial injury and further loss of renal function.

Animal studies showed an independent role of endothelins for manifestation of renal disease (Pinto-Sietsma et al., 2003). However, linkage analysis in African American families failed to find an association between ET-1 and ESRF of different causes (Pinto-Sietsma et al., 2003; Tahala et al., 2004).

Three SNPs, K198N, 3A/4A (-134delA) and T-1370G in the promoter of the ET-1 gene, have been reported to be associated with hypertension and renal insufficiency. A G to T transversion in exon 5 that causes the Lys to Asn substitution at codon 198 showed a positive association with BP in overweight people (Tiret et al., 1999; Jin et al., 2003). K/N amino acid change might affect the processing of preproendothelin and influence synthesis of ET-1. Recently, population homozygous for the N allele of K198N polymorphism and G allele of T-1370G polymorphism showed diminished glomerular filtration, lower creatinine clearance and obesity compared with the remaining genotype carriers (Pinto-Sietsma et al., 2003). The K198N polymorphism showed a positive association with BP elevation in overweight individuals (Tiret et al., 1999). Furthermore, the N198 allele was associated with higher systolic BP in pregnant women (Pinto-Sietsma et al., 2003). On the other hand, no difference in plasma ET1 level was found in respect to K198N or T-1370G polymorphisms. However, a variation of ET-1 in the kidney can be different because the majority of ET-1 is secreted at the abluminal side of the vessels and endothelin acts more as an autocrine system than a systemic peptide (Pinto-Sietsma et al., 2003).

The homozygotes with the 4A allele (insertion of adenosine) of 3A/4A polymorphism in the 5'-untranslated region of the ET-1 gene showed significantly increased expression of the ET-1 protein due to enhanced mRNA stability (Tahala et al., 2004). Furthermore, the ET-1 plasma level was significantly higher in 3A/4A hypertensive individuals than in homozygous individuals with the 3A allele. An association between the 4A allele and increased BP has been reported (Lajemi et al., 2001). Moreover, an elevated plasma ET-1 level was observed in hypertensive subjects with the 4A allele (Tahala et al., 2004).

In our study we investigated the possible effect of the K198N, 3A/4A and T-1370G polymorphisms of the endothelin gene on the progression of IgAN in Czech patients. No effect of these polymorphisms was found in single-gene analysis.

However, the ET-1 haplotype reconstruction revealed that the GG4A haplotype (defined as G-198, G-1370 and 4A alleles) was significantly associated with the IgAN patients.

Genetically, SNP may not alter expression or function of specific proteins so strongly as to produce pathologic phenotypes in multifactorial diseases (such
as IgAN). Although the possible ET-1 pathogenetic mechanism needs further clarification, our study suggests that the haplotype reconstruction of ET-1 gene polymorphisms could be more informative than the investigation of SNP for defining the risk of progression of IgAN.

The association of the GG4A haplotype with the chronic glomerulonephritides, especially IgAN, might by explained by shared interaction of all ET-1 polymorphisms. There may also be a synergistic influence of all ET-1 polymorphisms in development of the disease. Alternatively, this GG4A haplotype could be related to other polymorphisms or mutations that are responsible for the occurrence of the disease, and this haplotype might play a role as a marker of these polymorphisms/mutations. Such linkage might be specific just for the Czech population.

However, limited data are available regarding an association of three ET-1 SNP K198N, T-1370G and 3A/4A with the progression of IgAN to ESRF. As mentioned above, our results indicated potential effect of the GG4A haplotype on the progression of IgAN. It is clear that the influence of ET-1 polymorphisms on the progression of IgAN to ESRF needs to be elucidated by further studies composed of a larger number of patients and/or performed in other countries than in the Czech Republic.

References


